

Ce-NetConnection Руководство администратора ver.2.0

Для WINDOWS/LINUX

Содержание

1. Введение Ce-NetConnection	
1.1. Назначение документа	
1.2. Термины	
1.3. Назначение продукта	5
1.4. Технические требования	5
2. Подсистема сеНез	6
2.1. Основные функции	7
2.2. Установка	
2.2.1. Установка Docker	9
2.2.2. Установка Docker Compose	10
2.2.3. Развёртывание и запуск проекта	
2.2.4. Обновление	15
2.3. Конфигурирование	
2.3.1. Настройка сертификата	
2.3.2. Настройка сервиса сбора	
2.3.3. Настройка сервиса DeviceMaintenance	
2.3.4. Настройка сервиса Identity	
2.3.5. Настройка сервиса CENC	
2.3.6. Настройка сервиса Logger	
2.3.7. Настройка сервиса DataStore	
2.3.8. Настройка системы логирования	
3. Подсистема ceCloud	
3.1. Основные функции	
3.2. Установка	
3.2.1. Установка Docker	
3.2.2. Установка Docker Compose	
3.2.3. Развёртывание и запуск проекта	
3.2.4. Обновление	
3.3. Конфигурирование	
3.3.1. SNMP	
3.3.2. Modbus	

1. Введение Ce-NetConnection

1.1. Назначение документа

Этот документ является Руководством администратора Ce-NetConnection.

Для комфортной работы с Ce-NetConnection пользователям необходимо:

- Знать основы работы с браузером.

– Владеть инструментами конфигурирования и администрирования OS Windows, OS Linux, системами виртуализации, контейнеризации Docker и СУБД PostgreSQL.

 Уметь пользоваться командной строкой и технической документацией к применяемым компонентам системы.

Руководство администратора предназначено для следующих целей:

- Помочь пользователю корректно установить и развернуть продукт.

- Ознакомить пользователя с процессом установки обновлений.

1.2. Термины

– ESB (Enterprise Service Bus) – связующее программное обеспечение, обеспечивающее централизованный и унифицированный событийноориентированный обмен сообщениями между различными информационными системами на принципах сервис-ориентированной архитектуры.

– **MDM** (Meter data management) – класс прикладных программ, применяемых предприятиями энергетического сектора для управления данными, полученными с приборов учёта энергии.

3/38

– **HES** (Head End System) – система, обеспечивающая коммуникацию с приборами интеллектуального учёта, для сбора, измерения, контроля параметров и предоставления доступа пользователям и внешним системам.

– DLMS (Device Language Message Specification) – открытый протокол для обмена данными с приборами учета.

– СПОДЭС – спецификация протокола обмена данными электронных счетчиков построенный на базе DLMS.

– IEC 61968 – представляет собой серию стандартов, определяющих обмен информацией между системами распределения электроэнергии.

- IEC 61968-100(2022) – интеграция приложений в электроэнергетику общего пользования. Системные интерфейсы для управления распределением. Часть 100. Профили реализации.

– CENC – сервер канала связи, основным назначением которого является обеспечение канала связи между устройствами, имеющих не постоянный (динамический) IP-адрес и ПО верхнего уровня.

– cEnergo - программное обеспечение предназначенное для измерения и многотарифного коммерческого учета электрической энергии и мощности, автоматизированного сбора, хранения, обработки и отображения данных по энергопотреблению.

– HesDLMS - протокол, регламентирующий обмен данными между приборами учета и системами сбора данных, в основе которого лежит клиент-серверная архитектура.

– СПОДЭС - спецификация протокола обмена данными электронных счетчиков.

– МЭК-104 - протокол информационного обмена, реализованный в соответствии с ГОСТ Р МЭК 60870-5-104-2004.

– MKSP-1EE - модуль управления и мониторинга для электропитающих установок постоянного тока типа.

- IMEI - международный идентификатор мобильного оборудования.

4/38

– ModBus - открытый коммуникационный протокол. Примнется в промышленности для организации связи между электронными устройствами.

- СЕА - протокол обмена УСПД 164-01М, СЕ805 и СЕ805М.

1.3. Назначение продукта

Ce-NetConnection представляет собой систему для обеспечения возможности взаимодействия с приборами учета, просмотра и работы с данными приборов учета, возможности конфигурирования и обновления приборов учета.

Состоит из коммуникационной системы CENC в подсистеме обсечения связи и сбора ceHES и прикладной системы MDM в подсистеме ceCloud. Более подробная информация о каждой из подсистем содержится в соответствующих разделах данной документации.

Ce-NetConnection предоставляет возможность запуска на OC Windows и OC Linux (Ubuntu, Debian), в том числе отечественных Ред OC и Альт СП Сервер.

1.4. Технические требования

Для корректной работы Ce-NetConnection компьютер должен соответствовать следующим минимальным требованиям:

– Минимальное разрешение экрана 1280x1024.

– Оперативная память от 8ГБ.

– Подключение к интернету.

– Браузер.

Рекомендованные браузеры:

– Google Chrome v.123.

– Firefox v.124.

- Opera v.109.

Операционные системы:

– Требования к ОС для серверной части должны соответствовать актуальным требованиям для установки Docker 4.28.х (с ядром Engine 25.х). Смотрите раздел 2.1 по установке Docker.

 – Требования к ОС для клиентской части должны соответствовать требованиям браузеров, характеристикам монитора и оперативной памяти из пункта выше.

При развертывании приложения на ПК, выступающем сервером и клиентом, требования выше должны быть совмещены.

ВНИМАНИЕ!

При использовании VPN и Proxy возможны сетевые проблемы или сложности у служб обеспечивающих работу Docker, WSL, Hyper-V. Ознакомьтесь с официальным руководством Docker и при необходимости обратитесь к системному администратору для консультации и решения совместного использования VPN, Proxy и Docker,

2. Подсистема ceHes

«сеНеѕ» – коммуникационная система для организации и обеспечения взаимодействия с приборами учёта. Областью применения в рамках данной версии является серверная (облачная) платформа в виде микросервисной архитектуры в Docker-контейнерах.

Обеспечивает интеграцию с внешними MDM системами потребителя через предоставление REST-API на основе стандарта IEC 61968-100 (2022).

Система позволяет организовывать связь и обеспечивает доступ к основным функциям приборов.

Поддерживаемые приборы учёта:

- CE207 SPODES (поддержка версий 10.х, 12.х).

- CE307 SPODES (поддержка версий 10.х, 12.х).

- CE208 SPODES (поддержка версий 10.х, 12.х).

- CE308 SPODES (поддержка версий 10.х, 12.х).

Поддерживаемые функции:

Чтение данных измерений (в том числе профилей и параметров сети).

– Чтение журналов событий.

– Чтение состояния реле.

- Изменений (управление) состоянием реле.

- Чтение и запись (синхронизация) времени.

Основными областями применения сеНез являются:

- Интеллектуальные системы учета электроэнергии (ИСУЭ).

- Розничный рынок электроэнергии для электросетевых компаний.

– Управляющие компании: СНТ, ДНТ, ТСЖ, УК и другие.

– Объекты АСКУЭ «нетребовательных потребителей» с поддержкой приборов учёта по протоколу СПОДЭС.

2.1. Основные функции

В сеНеѕ существует четыре роли пользователей по умолчанию: пользователь, оператор, администратор и m2m. У каждой роли свой набор разрешений по умолчанию:

– Пользователь. Имеет доступ к просмотру основных форм системы и чтения архивных данных показаний, состояний и событий счетчиков.

 Оператор. Имеет доступ уровня пользователь и дополнительные возможности:

– Управление устройствами: добавлять, редактировать, удалять, настраивать параметры каналов связи и протоколов.

– Управление реле устройств.

– Управление расписаниями задач.

 Администратор. Имеет доступ уровня оператор, а также доступ к управлению системой: настройка сервера, управление пользователями, просмотр логов.

– m2m. Имеет доступ к чтению списка устройств, данных и возможность обращаться к REST-API интеграции на основе стандарта IEC 61968-100(2022).

2.2. Установка

Для начала нужно подготовить систему, установив в ней Docker и Docker-Compose. Необходимо установить актуальную версию с <u>официального сайта</u>.

На текущий момент это Docker Desktop 4.28.0 (Engine 25.0.3, Compose 2.24.6)

Ниже на рисунках (Рисунок 1) и (Рисунок 2) приведена демонстрация версий для Windows и Linux.

	sktop	# # ** ×
Version 4.28.0 (139021)		
📥 Engine: 25.0.3 🛛 🗹	Compose: v2.24.6-de	sktop.1
🖪 Credential Helper: v0.8.1 🛞	Kubernetes: v1.29.1	
Release Notes	Acknowledgments	Docker Subscription Service Agreement
Copyright © 20 Docker and the Docker logo are trade	015-2024 Docker Inc. All rig marks of Docker Inc. regis	ghts reserved. tered in the U.S. and other countries.

Рисунок 1 – Docker Desktop, просмотр версии

Рисунок 2 – Просмотр версии Docker Desktop через консоль

ВНИМАНИЕ!

Для установки на Windows необходимо иметь права локального администратора, а для Linux права уровня sudo/root.

2.2.1. Установка Docker

Актуальные системные требования, описание процесса установки и ссылки на загрузку Docker текущей версии приведены в официальной документации по ссылкам:

Для Windows: <u>https://docs.docker.com/desktop/windows/install</u>. Для Linux: <u>https://docs.docker.com/desktop/linux/install</u>.

ВНИМАНИЕ!

Необходимо устанавливать Docker Engine не ниже версии 24.х.

2.2.2. Установка Docker Compose

Для Windows он будет установлен в составе Docker Desktop.

Для Linux, если установка производилась не с пакетом Docker Desktop, необходима ручная установка.

Ниже приведен пример установки для Ubuntu 22.04.

Начнем с определения последнего выпуска Docker Compose на странице выпусков (<u>https://github.com/docker/compose/releases</u>).

В примерах команд ниже замените версию v2.26.0 на актуальную.

Запустите следующую команду для загрузки Docker Compose и предоставьте глобальный доступ к этому ПО в своей системе:

```
$ sudo curl -k -L
"https://github.com/docker/compose/releases/download/v2.26.0/
docker-compose-$(uname -s)-$(uname -m)" -o
/usr/local/bin/docker-compose
```

```
Вариант запуска команды с указанием прокси-сервера:
```

```
$ sudo curl -x 'http:/10.5.0.9:3128' -L
"https://github.com/docker/compose/releases/download/v2.
26.0/docker-compose-$(uname -s)-$(uname -m)" -o
/usr/local/bin/docker-compose
```

Вариант запуска команды с указанием прокси–сервера и игнорирование SSL сертификата (параметр -k или --insecure):

```
$ sudo curl -k -x 'http:/10.5.0.9:3128' -L
"https://github.com/docker/compose/releases/download/v2.
26.0/docker-compose-$(uname -s)-$(uname -m)" -o
/usr/local/bin/docker-compose
```

Затем необходимо задать правильные разрешения, чтобы сделать команду docker-compose исполняемой:

\$ sudo chmod +x /usr/local/bin/docker-compose

Чтобы проверить успешность установки, запустите следующую команду:

\$ sudo docker-compose --version

Вывод будет выглядеть следующим образом:

\$ Docker Compose version v2.26.0.

2.2.3. Развёртывание и запуск проекта

После того как Docker и Docker-Сортрове установлены, достаточно запустить команду развёртывания проекта из репозитория Nexus (сервис Энергомера Софт).

Для этого необходимо скопировать файлы **docker-compose.yml** и **.env** в любую папку (не рекомендуется использовать длинные пути в папках или кириллические символы).

После чего, перейдя к папке с файлами в консоли, выполнить команду (см. шаг 3 в разделе 2.4 Обновление):

Ubuntu:

Windows:

docker-compose -f docker-compose.hes.yaml -p hes up -d

ВНИМАНИЕ!

Для обеспечения безопасности рекомендуется в docker-compose.yml перед развертыванием, прописать пароль системного администратора СУБД PostgreSQL (заменить root на требуемый в следующих параметрах - POSTGRES_USER=root - POSTGRES_PASSWORD=root).

ВНИМАНИЕ!

Для Windows консоль управления необходимо открыть от имени администратора.

 ВНИМАНИЕ!
 Для успешного выполнения всех действий необходимо наличие интернета. В случае, если интернет доступен через прокси-сервер, то необходимо настроить систему и Docker на работу через него (рекомендуется использовать интернет без прокси-сервера).

ВНИМАНИЕ!

Для исключения бесконтрольного расширения дискового пространства при внутренней процедуре логирования Docker консольного

вывода контейнеров необходимо настроить ограничения на файлы логов Docker (официальная документация доступна по <u>ссылке</u>).

Например, добавив ограничения:

```
"log-opts": {
    "max-file": "5",
    "max-size": "10m"
}
```

Это не более 5 файлов логов архива с размером не более 10МБ.

Для Docker Desktop под Windows можно выполнить настройки (Рисунок 3).

Рисунок 3 – Настройка ограничений

После изменения настроек необходимо нажать кнопку «Apply & restart».

ВНИМАНИЕ!

Возможна установка и настройка сертификата безопасности для подключения по HTTPS.

При необходимости его можно установить по пути хранения тома cloud_nginxssl. Путь можно узнать в параметре Mountpoint, выполнив команду:

```
docker volume inspect hes_nginxssl
```

```
Пример вывода (Рисунок 4):
```

```
ſ
         {
             "CreatedAt": "2023-11-27T16:24:45Z",
             "Driver": "local",
             "Labels": {
                 "com.docker.compose.project": "hes",
                 "com.docker.compose.version": "2.23.3",
                 "com.docker.compose.volume": "nginxssl"
             },
             "Mountpoint":
"/var/lib/docker/volumes/hes nginxssl/ data",
             "Name": "hes nginxssl",
             "Options": null,
             "Scope": "local"
         }
     1
```

```
admin@cehes-dev: ~
                                                                                                         Х
dmin@cehes-dev:~$ docker volume inspect hes_nginxssl
        "CreatedAt": "2023-11-27T16:24:45Z",
        "Driver": "local",
        "Labels": {
            "com.docker.compose.project": "hes",
            "com.docker.compose.version": "2.23.3",
"com.docker.compose.volume": "nginxssl"
        },
"Mountpoint": "/var/lib/docker/volumes/hes_nginxssl/_data",
        "Name": "hes nginxssl",
        "Options": null,
        "Scope": "local"
admin@cehes-dev:~$ sudo tree /var/lib/docker/volumes/hes_nginxssl/_data

    nginx-selfsigned.key

      - nginx-selfsigned.crt
   ssl_conf
directories, 3 files
admin@cehes-dev:~$
```

Рисунок 4 – Пример вывода в консоли

По пути /var/lib/docker/volumes/hes_nginxssl/_data в подпапках private public необходимо расположить файлы ключа (nginx-selfsigned.key) и сертификата (nginx-selfsigned.crt).

Пример подготовки самоподписанного сертификата см. далее <u>3.1.</u> <u>Настройка сертификата</u>. Нужно обратить внимание на обязательное наличие в сертификате всех вариантов альтернативных имён DNS и IP в [alt_names].

После успешного развертывания контейнеров веб–интерфейс приложения будет доступен по ссылке <u>https://localhost</u> либо по адресу IP сервера, на котором оно было развёрнуто.

2.2.4. Обновление

Рекомендуется следующая последовательность шагов:

1) Остановить сервисы (Рисунок 5). Этот шаг является необязательным.

Ubuntu:

```
sudo docker-compose -f docker-compose.hes.yaml -p hes
down
```

Windows:

docker-compose -f docker-compose.hes.yaml -p hes down

🚱 admin@cehes-dev: ~/hes			×
admin@cehes-dev:~/hes\$ sudo docke	r-compose -p hes down		
[+] Running 20/20			
Container hes-nginx-gateway	Removed		13
Container hes-logger	Removed		63
Container hes-email	Removed		13
Container hes-exchanger			55
Container hes-maintenance-api			9 3
Container hes-esb-iec61968	Removed		63
Container hes-localizator			5 5
Container hes-synchronizer	Removed		68
Container hes-data-gateway			55
Container hes-dev-docs	Removed		1 =
Container hes-commandgateway	Removed		73
Container hes-web	Removed		÷ =
Container hes-scheduler			0 =
Container hes-devices			8 -
Container hes-datastore	Removed		3 3
Container hes-identity			6.5
Container api-gateway	Removed		63
Container hes-psqlserver			3 3
Container hes-rabbitmq-l	Removed		2 =
Network hes hes-net			3 5
admin@cehes-dev:~/hes\$			

Рисунок 5 – Остановка сервисов

2) Обновить сервисы (Рисунок 6). Этот шаг можно выполнить повторно, чтобы убедиться, что все обновления прошли успешно и более система не обнаруживает новые версии образов.

Ubuntu:

```
sudo docker-compose -f docker-compose.hes.yaml -p hes
pull
```

Windows:

docker-compose -f docker-compose.hes.yaml -p hes pull

Рисунок 6 – Обновление сервисов

3) Запустить сервисы (Рисунок 7). Этот шаг может потребовать некоторое время, которое необходимо сервисам для инициализации настроек при их старте. Необходимо дождаться, пока у каждого сервиса будет выведено состояние Started или Healthy.

Ubuntu:

-d

Windows:

docker-compose -f docker-compose.hes.yaml -p hes up -d

sudo docker-compose -f docker-compose.hes.yaml -p hes up

P admin@cehes-dev: ~/hes		_	×
admin@cehes-dev:~/hes\$ sudo dock	er-compose -p hes up -d		
[+] Running 20/20			
Network hes_hes-net			.2 =
Container hes-email			.85
Container hes-web			.83
Container hes-psqlserver	Healthy		.83
Container hes-dev-docs			.83
Container hes-synchronizer			.73
Container hes-data-gateway			.73
Container hes-nginx-gateway			.73
Container api-gateway	Healthy		.73
Container hes-rabbitmq-1	Healthy		.83
Container hes-logger			.38
💊 Container hes-maintenance-api			.38
Container hes-identity	Healthy		.35
Container hes-scheduler	Healthy		.35
Container hes-devices	Healthy		.35
Container hes-datastore	Healthy		.38
Container hes-esb-iec61968			.43
Container hes-exchanger			. 4 =
Container hes-localizator			. 4 8
Container hes-commandgateway			. 9 3
admin@cehes-dev:~/hes\$			

Рисунок 7 – Запуск сервисов

2.3. Конфигурирование

2.3.1. Настройка сертификата

Файл сертификата должен быть расположен по пути хранения тома hes_nginxssl. (см. подраздел <u>2.2.3. Развёртывание и запуск проекта</u>, в разделе <u>2. Установка</u>): /var/lib/docker/volumes/hes_nginxssl/_data. Имя файла должно быть nginx-selfsigned.crt

Для генерации самоподписанного сертификата, можно использовать openSSL.

Пример создания самоподписанного сертификата для Linux:

1. Создайте новую папку для работы и перейдите в неё:

```
mkdir /new-certs
cd /new-certs
```

2. Сгенерируйте приватный ключ:

openssl genrsa -out nginx-selfsigned.key 2048

3. Создайте текстовый файл ssl_conf следующего содержания:

```
[req]
default bits
                  = 4096
prompt
                  = no
default md
                  = sha256
x509 extensions = v3 req
distinguished name = dn
[dn]
С
            = RU
ST
            = {край/область/штат}
L
           = {город/населенный пункт}
0
            = {организация}
CN
            = {доменное имя сервера}
emailAddress = {электронная почта}
[v3 req]
subjectAltName = @alt_names
[alt names]
DNS.1 = {доменное имя сервера}
       = {ip-адрес сервера}
IP.1
```


ВНИМАНИЕ!

Замените значения в фигурных скобках на валидные.

4. Сгенерируйте сертификат командой:

```
openssl req -new -x509 -key nginx-selfsigned.key -days
730 -out nginx-selfsigned.crt -config <(cat ssl_conf)</pre>
```

Альтернативный способ генерирования ключа без файла конфигурации:

sudo openssl req -x509 -nodes -days 730 -newkey rsa:2048 -out selfsigned.crt -keyout nginx-selfsigned.key -addext "subjectAltName = DNS.1:{короткое доменное имя сервера}, DNS.2:{доменное имя сервера}, IP.1:{ip-адрес сервера}"

В данном случае все параметры, описанные в файле конфигурации, будут запрашиваться для ввода в процессе генерации ключа.

5. Переместите ключ nginx-selfsigned.key в папку private, которая была примонтирована к сервисам nginxserver.

6. Переместите сертификат nginx-selfsigned.crt в папку public, которая была примонтирована к сервисам nginxserver.

7. Перезапустите сервисы.

Подробности можно изучить в <u>официальной документации OpenSSL</u>.

2.3.2. Настройка сервиса сбора

Для настройки системы сбора возможно использовать переменные окружения.

Для этого в файле docker-compose.yaml в списке сервисов необходимо найти сервис exchanger и установить требуемые значения переменных окружения. Например, для установки работы сбора в 1000 потоков:

exchanger: environment: - exchange__concurrency=1000

Список переменных окружения для сбора (Таблица 1):

··· · · · · · · ·		rt F
Переменная окружения	Значение по умолчанию	Описание
exchangeconcurrency	10	Максимальное количество
		параллельных потоков
		сбора/отправок команд
exchange jobLifetime	00:05:00	Максимальное время

Таблица 1 – Список переменных окружения для соор	Таблица 1	- (Список	переменных	окружения,	для	сбора
--	-----------	-----	--------	------------	------------	-----	-------

жизни	задачи
сбора/отправк	и команды,
после которог	о она будет
отменена, в	случае если
отсутствует	активность
канала связи	

Переменные окружения также можно настроить, введя требуемые значения в соответствующий файл .env, расположенный рядом с dockercompose.yaml.

Пример:

E	EXCI	HANGER_	CONC	CURRENCY=1000
E	EXCI	ANGER	JOB	LIFETIME=00:05:00
F	IES	NAME=I	DEMO	_

2.3.3. Настройка сервиса DeviceMaintenance

Сервис DeviceMaintenance – содержит ряд переменных окружения, которые могут использоваться для конфигурирования поведения сервиса

Список переменных окружения (Таблица 2):

Таблица 2 – Список переменных окружения сервиса DeviceMaintenance

Переменная окружения	Значение по умолчанию	Описание
HostInfoName	UNAVAILABLE	Имя хоста, которое будет
		отображаться на дашборде
		и странице с информацией
		о хосте в поле «Серийный
		номер».
HostInfo_IsCloud	true	Флаг того, что ПО
		запущено в облаке

Переменные окружения также можно настроить, введя требуемые значения в соответствующий файл .env, расположенный рядом с dockercompose.yaml.

2.3.4. Настройка сервиса Identity

Сервис Identity – содержит ряд переменных окружения, которые могут использоваться для конфигурирования поведения сервиса (Таблица 3).

Переменная окружения	Значение по умолчанию	Описание
HostURI		URI/IP-адрес хоста
		Параметр необходимо
		указать в соответствии с
		настроенной
		инфраструктурой, для
		возможности корректного
		восстановления пароля
		пользователя
AuthSettings_Signing		Ключ для подписи JWE –
		токена
AuthSettings_Encryption		Ключ для шифрования
		ЈWЕ-токена

Таблица 3 – Список переменных окружения сервиса Identity

2.3.5. Настройка сервиса СЕМС

Сервис CENC – содержит следующий ряд переменных окружения, которые могут использоваться для конфигурирования его поведения.

Список переменных окружения указан в Таблица 4.

|--|

Переменная окружения	Значение по умолчанию	Описание
CENC Device Listen 0	11001	Порт для подключения
		устройств по TCP/UDP
CENC Device Listen 1	11002	Порт для подключения
		устройств по TCP/UDP
CENC AMR Listen 0	22002	Порт для подключения ПО

ВНИМАНИЕ!

Числа в конце 0, 1 – индексы в массиве, нумерация в котором начинается с 0; таким образом, в случае если необходимо настроить 100 портов – последнее число - 99.

Настройка отправки событий в ceHES.

Необходимо указать массив событий, которые должны отправляться в ceHES.

Список событий, которые может отправлять CENC, приведен в REF Ref12 \h * MERGEFORMATTаблице 5.

Событие	Описание
SET_CENC_DEVICE_CONNECTED	Устройство подключено
SET_CENC_DEVICE_DISCONNECTED	Устройство отключено
SET_CENC_DEVICE_ACCESS_START	Начало использования СЕМС в качестве
	канала связи
SET_CENC_DEVICE_ACCESS_FINISH	Окончание использования СЕМС в
	качестве канала связи
SET_CENC_ERROR	Системная ошибка CENC
SET_CENC_AMR_USER_ADDED	AMR-агент добавлен
SET_CENC_AMR_USER_UPDATE_NA	Обновлено имя AMR-агента
ME	
SET_CENC_AMR_USER_UPDATE_PA	Обновлен пароль AMR-агента
SSWORD	

Таблица 5 – События, отправляемые CENC

Для настройки событий, можно воспользоваться переменными среды и передать необходимые события из docker-compose файла.

Пример:

Plugins__Energomera.Hes.CENC.Plugins.CEHesIntegrationPlug
in notifications 0=SET CENC DEVICE CONNECTED

Plugins__Energomera.Hes.CENC.Plugins.CEHesInteg rationPlugin__notifications__1=SET_CENC_DEVICE_DISCONNECTED

В данном примере – настроили передачу событий SET CENC DEVICE CONNECTED,

SET_CENC_DEVICE_DISCONNECTED B ceHES.

По умолчанию CENC отправляет события:

- SET_CENC_DEVICE_CONNECTED
- SET_CENC_DEVICE_DISCONNECTED
- SET_CENC_ERROR
- SET_CENC_AMR_USER_ADDED
- SET_CENC_AMR_USER_UPDATE_NAME
- SET_CENC_AMR_USER_UPDATE_PASSWORD

Пример пользовательской настройки сервиса CENC в dockercompos'e:

hes-cenc:

```
restart: always
```

image: hub.energomera.ru/hes/hes.cenc

container_name: hes-cenc

hostname: hes.cenc

networks:

- hes-net

ports:

- "65000:65000/tcp"
- "65000:65000/udp"
- "65001:65001/tcp"
- "65001:65001/udp"

Пример на случай, если на хост-машине проброс должен отличаться

- "5000:65002/tcp"
- "5000:65002/udp"
- "64000:64000/tcp"
- # Пример на случай, если на хост-машине проброс должен отличаться
 - "5001:64001/tcp"
 - # Для проброса портов прямого доступа
 - # "7500-8000:7500-8000"

environment:

- # кастомные порты прослушивания подключения устройств
- # внутри контейнера

```
# их необходимо смаппить с портами хоста в секции `ports`
     - CENC Device Listen 0=65000
     - CENC Device Listen 1=65001
     - CENC Device Listen 2=65002
     # кастомные порты прослушивания подключения ПО верхнего
уровня
     # внутри контейнера
     # их необходимо смаппить с портами хоста в секции `ports`
     - CENC AMR Listen 0=64000
     - CENC AMR Listen 1=64001
   depends on:
     rabbitmq:
       condition: service healthy
      devices:
        condition: service healthy
      identity:
        condition: service healthy
     psqlserver:
       condition: service healthy
```

2.3.6. Настройка сервиса Logger

Сервис Logger – служит для хранения и предоставления логгов и событий системы. Так же сервис выполняет операции очистки логов, в соответствии с переданными настройками.

Базовая настройка очистки логов может быть осуществлена с помощью переменных окружения (Таблица 6).

· · · · · · · · · · · · · · · · · · ·	1	1 00
Переменная окружения	Значение по умолчанию	Описание
DebugLogsLifetime_Fatal	60.00:00:00	Время хранения отладочных
		логов уровня Fatal
DebugLogsLifetime_Error	60.00:00:00	Время хранения отладочных
		логов уровня Error
DebugLogsLifetimeWarning	60.00:00:00	Время хранения отладочных
		логов уровня Warning

Таблица 6 – Список переменных окружения сервиса Logger

DebugLogsLifetimeInformatio	10.00:00:00	Время хранения отладочных
n		логов уровня Information
DebugLogsLifetime_Debug	2.00:00:00	Время хранения отладочных
		логов уровня Debug
DebugLogsLifetimeTrace	1.00:00:00	Время хранения отладочных
		логов уровня Trace

2.3.7. Настройка сервиса DataStore

Сервис DataStore служит для хранения и предоставления измерений, журналов событий, состояний, истории выполненных команд. Так же сервис выполняет операции очистки собранных данных, в соответствии с переданными настройками.

Некоторые настройки, которые при необходимости можно отредактировать, вынесены в переменные окружения (Таблица 7).

Таблица 7 – Список переменных окружения сервиса DataStore

Переменная окружения	Значение по умолчанию	Описание
archiveClear/launchFrequenc	1.00:00:00	Периодичность запуска
У		задачи очистки данных
archiveClear/functionDepth	365.00:00:00	Глубина хранения журнала
		истории выполненных
		команд

2.3.8. Настройка системы логирования

Все сервисы, по умолчанию, имеют возможность логгировать в файл, консоль, либо в СУБД.

В случае необходимости – каждому сервису можно индивидуально настроить логгирование. Для этого – необходимо подключиться к контейнеру и произвести редактирование файла nlog.config, который расположен в папке с приложением(/app).

Формат и примеры настройки файла nlog.config может быть найден по ссылке https://nlog-project.org/config/

3. Подсистема ceCloud

«ceCloud» - это облачный сервис, предназначенный для удаленной работы с приборами учёта. Сервис позволяет отслеживать данные о приборах с помощью графиков, таблиц и журналов событий с помощью стандартного web-браузера.

Клиент может использовать ceCloud на своих серверах, либо воспользоваться услугой по размещению сервиса на серверах правообладателя.

Основными областями применения ceCloud являются:

- Интеллектуальные системы учета электроэнергии (ИСУЭ).

– Розничный рынок электроэнергии для электросетевых компаний.

– Управляющие компании: СНТ, ДНТ, ТСЖ, УК и другие.

– На объектах АСКУЭ «нетребовательных потребителей», с поддержкой приборов учёта по протоколу СПОДЭС.

К дополнительным областям применения относятся:

– Системы мониторинга электрохимзащиты (ЭХЗ) по протоколу MODBUS.

– Системы мониторинга электропитающих устройств (ЭПУ) по протоколу SNMP.

3.1. Основные функции

В ceCloud существует три типа прав пользователей: абонент, менеджер, администратор. Каждому типу доступны свои программные функции:

– Абонент. Имеет доступ к учетной записи, где отображается информация об абоненте, заключенных договорах, и показание счетчиков.

– Менеджер. Имеет доступ к списку проектов, к информации о системе, к данным по энергопотреблению, к данным о параметрах сети, к данным о телеметрии, к данным о журналах событий. Также менеджеру доступны следующие функции:

 Управление устройствами: добавлять, редактировать, удалять, заменять, демонтировать, отключать.

– Импортирование данных.

- Управление реле устройств.

- Просмотр и редактирование информации на геокарте.

- Управление расписаниями сервисов.

- Работа с устройствами по протоколу Modbus.

- Работа с устройствами по протоколу SNMP.

- Работа с устройствами по протоколу IEC104.

– Администратор. Имеет те же права, что и менеджер, а также доступ к управлению системой: настройка сервера, управление пользователями, настройка импорта из систем cEnergo и HesDLMS, просмотр логов.

3.2. Установка

Для начала нужно подготовить систему установив в ней Docker и Docker-Compose.

Для работы с приборами учёта (связь с ними, сбор показаний, передача команд управления реле) в текущей версии 1.1 необходима установка сЕпегдо 4.8 (*только Windows*). Интеграция реализуется через сервис IntegratorCenergo путем взаимодействия с БД сЕпегдо напрямую (см. руководство пользователя).

Внимание! Для установки необходимо иметь права локального администратора.

3.2.1. Установка Docker

Данный шаг можно пропустить, если Docker уже установлен.

Актуальные системные требования, описание процесса установки и ссылки на загрузку Docker текущей версии приведены в официальной документации по ссылкам:

Для Windows: <u>https://docs.docker.com/desktop/windows/install</u>. Для Linux: <u>https://docs.docker.com/desktop/linux/install</u>.

3.2.2. Установка Docker Compose

Данный шаг можно пропустить, если Docker Compose уже установлен.

Для Windows он будет установлен в составе Docker Desktop.

Для Linux если установка производилась не пакетов Docker Desktop либо необходима отдельная установка возможна установка вручную.

Ниже приведен пример установки для Ubuntu 22.04.

Начнем с определения последнего выпуска Docker Compose на странице выпусков (https://github.com/docker/compose/releases). На момент написания настоящего документа наиболее актуальной стабильной версией является версия 2.14.0.

Запустите следующую команду для загрузки Docker Compose и предоставьте глобальный доступ к этому ПО в своей системе как dockercompose:

\$ sudo curl -k -L

"https://github.com/docker/compose/releases/download/v2.14.0/docker-compose-\$(uname -s)-\$(uname -m)" -o /usr/local/bin/docker-compose

Вариант запуска команды с указанием прокси сервера:

\$ sudo curl -x 'http:/10.5.0.9:3128' -L

"https://github.com/docker/compose/releases/download/v2.14.0/dockercompose-\$(uname -s)-\$(uname -m)" -o /usr/local/bin/docker-compose

Вариант запуска команды с указанием прокси сервера и игнорирование SSL сертификата (параметр -k или --insecure):

\$ sudo curl -k -x 'http:/10.5.0.9:3128' -L

"https://github.com/docker/compose/releases/download/v2.14.0/dockercompose-\$(uname -s)-\$(uname -m)" -o /usr/local/bin/docker-compose

Затем необходимо задать правильные разрешения, чтобы сделать команду docker-compose исполняемой:

\$ sudo chmod +x /usr/local/bin/docker-compose

Чтобы проверить успешность установки, запустите следующую команду:

\$ sudo docker-compose --version

Вывод будет выглядеть следующим образом: Docker Compose version v2.14.0

3.2.3. Развёртывание и запуск проекта

После того как Docker и Docker-Copmpose установлены достаточно запустить команду развёртывания проекта из репозитория DockerHub.

Для этого необходимо скопировать файл docker-compose.yml в любую папку и перейдя к ней в командной консоли выполнить команду:

Ubuntu: \$ sudo docker-compose –f docker-compose.cloud.yaml-p cloud up -d

Windows: \$ docker-compose –f docker-compose.cloud.yaml-p cloud up -d

Внимание! Для обеспечения безопасности рекомендуется в dockercompose.yml перед развертыванием прописать пароль системного администратора СУБД PostgreSQL (заменить root на требуемый в следующих параметрах - POSTGRES_USER=root -POSTGRES_PASSWORD=root).

Внимание! Для Windows консоль управления необходимо открыть от имени администратора.

Внимание! Для успешного выполнения всех действие необходимо наличие интернета. В случае если интернет доступен через прокси-сервер, то необходимо настроить систему и Docker на работу через него (рекомендуется использовать интернет без прокси-сервера).

Внимание! Для исключения бесконтрольного расширения дискового пространства при внутренней процедуре логирования Docker консольного вывода контейнеров необходимо настроить ограничения на файлы логов Docker (официальная документация доступна по <u>ссылке</u>).

Например, добавив ограничения:

"	log-opts": {
	"max-file": "5",
	"max-size": "10m"
)	

Это не более 5 файлов логов архива, с размером не более 10МБ.

Для Docker Desktop под Windows можно выполнить настройки, как на изображении ниже (Рисунок 8).

Рисунок 8

После изменения настроек необходимо нажать кнопку «Apply&restart».

Внимание! Для настройки сертификата безопасности подключения по HTTPS возможна его установка.

При необходимости его можно установить по пути хранения тома cloud_nginxssl. Путь можно узнать в параметре Mountpoint, выполнив команду:

\$ docker volume inspect cloud_nginxssl

Пример вывода (Рисунок 9):

```
{
    {
        "CreatedAt": "2022-11-29T13:24:59Z",
        "Driver": "local",
        "Labels": {
            "com.docker.compose.project": "cloud",
            "com.docker.compose.version": "2.12.2",
            "com.docker.compose.volume": "nginxssl"
        },
        "Mountpoint": "/var/lib/docker/volumes/cloud_nginxssl/_data",
        "Name": "cloud_nginxssl",
        }
    }
}
```

}

akr@ubuntu-cenergocloud: ~	_	×
xr@ubuntu-cenergocloud:~\$ sudo docker volume inspect cloud nginxssl		
"CreatedAt": "2022-12-06T11:22:17Z",		
"Driver": "local",		
"Labels": {		
"com.docker.compose.project": "cloud",		
"com.docker.compose.version": "2.12.2",		
"com.docker.compose.volume": "nginxssl"		
},		
"Mountpoint": "/var/lib/docker/volumes/cloud_nginxssl/_data",		
"Name": "cloud_nginxssl",		
"Options": null,		
"Scope": "local"		
r@ubuntu-cenergocloud:~\$ sudo tree /var/lib/docker/volumes/cloud_nginxssl/_data		
ar/lib/docker/volumes/cloud_nginxssl/_data		
L nginx-selfsigned.key		
- public		
- img		
— 1.png		
2.png		
- 3.png		
- 4.png		
5.png		
- 6.png		
— 7.png		
9.png		
- index.html		
L nginx-selfsigned.crt		
directories, 12 files		
r@ubuntu-cenergocloud:~\$		

Рисунок 9

По пути /var/lib/docker/volumes/cloud_nginxssl/_data в подпапках private public необходимо расположить файлы ключа (nginx-selfsigned.key) и сертификата (nginx-selfsigned.crt).

Пример подготовки самоподписанного сертификата см. далее 3.1.1 Регистрация в один клик, в разделе SNMP. Нужно обратить внимания на обязательное наличие в сертификате всех вариантов альтернативных имён DNS и IP в [alt_names].

После успешного развертывания контейнеров веб интерфейс проекта будет доступен по адресу https://localhost

3.2.4. Обновление

Рекомендуется следующая последовательность шагов:

1) Остановить сервисы (Рисунок 10). Этот шаг является необязательным.

 Ubuntu:
\$ sudo docker-compose -f docker-compose.cloud.yaml-p cloud down
Windows:
\$ docker-compose -f docker-compose.cloud.yaml-p cloud down

🚈 akr@ubuntu-cenergocloud: ~		8 <u>75</u>	\times
akr@ubuntu-cenergocloud:~\$ sudo docke	r-compose -p cloud down		
[sudo] password for akr:			
akr@ubuntu-cenergocloud:~\$			

Рисунок 10

2) Обновить сервисы (Рисунок 11). Этот шаг можно выполнить повторно чтобы убедится, что все обновления прошли успешно и более системе не обнаруживает новые версии образов.

 Ubuntu:
\$ sudo docker-compose –f docker-compose.cloud.yaml -p cloud pull
Windows:
\$ docker-compose –f docker-compose.cloud.yaml -p cloud pull

	akr@ubuntu-cenergocloud: ~	2 <u></u>		×
akr(}ubuntu-cenergocloud:~\$ sudo docker-compose -p cloud pull			
[+]	Running 17/27			
8.1				3
5 0				13
B				13
Ξ.				3
8.1				-
B				-3
5 (13
8.1				13
₿.(-
5 (3
8 1				3
Ξ.				13
H 1				13
- H - 1				13
	nginxserver Pulling		4.2	25
				13
	: al484661dfe6 Downloading 556.3kB/7.236MB		1.6	5s
	: 2f78a3560dl0 Download complete		1.6	5s
	: a517401f7a94 Download complete		1.6	5s
	294dl7c34dl3 Waiting		1.6	5s
	: 7051f5a2f4bl Waiting		1.6	5S
	: 977b508al9e0 Waiting		1.6	os
	: fl2dac2be4d4 Waiting		1.6	5S
	# c8llc0ce884b Waiting		1.6	5s
	# 0f56b475a58f Waiting		1.6	5s

Рисунок 11

2) Запустить сервисы:

Ubuntu:

\$ sudo docker-compose –f docker-compose.cloud.yaml -p cloud up -d

Windows:

\$ docker-compose –f docker-compose.cloud.yaml -p cloud up -d

📑 akr@ubuntu-cenergocloud: ~		2 <u>75</u>	\square >	<
akr@ubuntu-cenergocloud:~\$ sudo docke	r-compose -p cloud up -d			4
akr@ubuntu-cenergocloud:~\$				

Рисунок 12

3.3. Конфигурирование

3.3.1. SNMP

Сервис SNMP - использует ряд настроек, которые могут быть изменены в случае необходимости.

Для изменения настроек - необходимо переопределить ключи с помощью переменных среды перед запуском контейнера. Как это может быть сделано описано в документации docker-compose: <u>https://docs.docker.com/compose/environment-variables/</u>.

Внимание! Использование «:» для разделения иерархических ключей - не поддерживается рядом операционных систем, потому - лучшим вариантом будет использование «___» (подробнее).

Для настройки сервиса SNMP используются следующие ключи:

Автоматическая регистрация устройства:

Auth_EntryPoint - веб-сервер через который устройство MKSP-1EE сможет обратиться к сеCloud для проведения процедуры автоматической регистрации в системе.

Пример:

Auth__EntryPoint=<u>https://www.cecloud.ru</u>.

Внимание! Значение пути должно включать схему (<u>Ошибка!</u> <u>Недопустимый объект гиперссылки.</u> или <u>Ошибка! Недопустимый</u> <u>объект гиперссылки.</u> в зависимости от настроек сервера). По умолчанию используется https.

Внимание! В случае использования реверс-прокси, он должен быть настроен на редирект контейнеру **cloud.nginxserver** либо **cloud.gateway.**

3.1.1 Регистрация в один клик

Функция контроллера «Регистрация в один клик» – требует сертификат сервера, содержащего информацию о домене и IP-адресе сервера.

Файл сертификата должен быть расположен по пути хранения тома cloud_nginxssl. (см. Развёртывание и запуск проекта, в разделе 2.2. Установка): /var/lib/docker/volumes/cloud_nginxssl/_data/public. Имя файла должно быть nginx-selfsigned.crt

Для генерации самоподписанного сертификата, можно использовать openSSL.

Пример создания самоподписанного сертификат для Linux.

1. Создайте новую папку для работы и перейдите в неё:

\$ mkdir /new-certs

\$ cd /new-certs

2. Сгенерируйте приватный ключ:

\$ openssl genrsa -out nginx-selfsigned.key 2048

3. Создайте текстовый файл ssl conf следующего содержания:

[Teq] default_bits prompt default_md x509_extensions distinguished_name	= 4096 = no = sha256 = v3_req = dn
[dn] C = RU ST = {кр L = {го O = {ор CN = {до emailAddress = {эл	ай/область/штат} род/населенный пункт} ганизация} менное имя сервера} ектронная почта}
[v3_req] subjectAltName = @	alt_names
[alt_names] DNS.1 = {доменн IP.1 = {ip-адр	ое имя сервера} ес сервера}

Внимание! Замените значения в фигурных скобках валидными в вашем случае.

4. Сгенерируйте сертификат командой:

\$ openssl req -new -x509 -key nginx-selfsigned.key -days 730 -out nginxselfsigned.crt -config <(cat ssl_conf)

Альтернативный способ генерирования ключа без файла конфигурации:

\$ sudo openssl req -x509 -nodes -days 730 -newkey rsa:2048 -out selfsigned.crt -keyout nginx-selfsigned.key -addext "subjectAltName = DNS.1:{короткое доменное имя сервера}, DNS.2:{доменное имя сервера}, IP.1:{ip-адрес сервера}"

В данном случае все параметры описанные в файле конфигурации будут запрашивать для ввода в процессе генерации ключа.

5. Переместите ключ nginx-selfsigned.key в папку private, которая была примонтирована к сервисам nginxserver и snmp.

6. Переместите сертификат nginx-selfsigned.crt в папку public, которая была примонтирована к сервисам nginxserver и snmp.

7. Перезапустите сервисы.

Подробности можно изучить в официальной документации OpenSSL <u>https://www.openssl.org/docs/manmaster/man1/openssl-req.html</u>

3.3.2. Modbus

В сервисе Modbus используются настройки, которые могут быть изменены в случае необходимости.

Для соединения устройств с сервисом Modbus используется внешний порт 21050. В случае если данный порт занят, его можно заменить на необходимый в файле docker-compose.yml.

Для этого нужно открыть в любом тестовом редакторе файл dockercompose.yml. Затем в файле найти сервис «modbus», внутри сервиса найти раздел «ports».

Порты имеют следующий формат:

«внешний_порт_docker:внутрений_порт_контейнера».

Чтобы изменить порта для работы с устройствами нужно найти прописанные порты -21050:5050 и значение внешнего порта заменить на необходимый для вашей сети.

В случае если ceCloud запущен чтобы применить изменённые настройки нужно его перезапустить для этого нужно остановить сервисы путем выполнения команды:

Ubuntu:

\$ sudo docker-compose –f docker-compose.cloud.yaml -p cloud down

Windows:

\$ docker-compose –f docker-compose.cloud.yaml -p cloud down

И после запустить сервисы:

Ubuntu:

\$ sudo docker-compose –f docker-compose.cloud.yaml -p cloud up -d

Windows:

\$ docker-compose –f docker-compose.cloud.yaml -p cloud up -d